

OX-SFP-SS-20

Features

- Types available: 1310nm Laser and PIN Photo-Detector 1490nm Laser and PIN Photo-Detector 1550nm Laser and PIN Photo-Detector
- 20km distance over SMF at least
- Build-in PHY supporting SGMII Interface
- Support More Link Status Monitor, Such as CRC, Package Counter and Far End Fault
- ♦ Indication(FEFI)
- Single 3. 3V Power Supply and TTL Logic Interface
- Compliant with SFP MSA package with duplex LC Connector
- Standard Serial ID information Compliant with SFP MSA
- Operating Case Temperature Standard: 0C~+70C

Industrial: -40C~+85C

Applications

- ♦ 100BASE-FX
- Switched Backplane Applications
- Switch to Switch Interface
- Other Optical Transmission System

Standards

- Compliant with SFP MSA (INF-8074i)
- ESD MIL-STD-883E Method 3015.7
- Compatible with SFF-8472

- Compliant with ITU-T G.957 STM-1
- FCC Part 15 Class B, UL, FDA and RoHS

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Relative Humidity	RH	5	95	%
Supply Voltage	Vcc	-0.5	4.0	V

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	TA	0		+70	°C
Power Supply Voltage	Vcc	3.15	3.3	3.45	V
Power Supply Current	Icc			300	mA
Surge Current	Isurge			+30	mA
Baud Rate			155		GBaud

Specifications-Electrical

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes		
TRANSMITTER								
LVPECL Inputs(Differential)	Vin	400		2500	mVp	AC coupled inputs		
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms @ DC		
Tx_DISABLE Input Voltage - High		2		3.45	V			
Tx_DISABLE Input Voltage - Low		0		0.8	V			
Tx_FAULT Output Voltage High		2		Vcc+0.3	V	Io = 400µA; Host Vcc		
Tx_FAULT Output Voltage Low	Tx_FAULT Output Voltage 0 Low		0.5	V	Io = -4.0mA			
		REC	EIVER					
LVPECL Outputs (Differential)	Vout	400	800	1200	mVpp	AC coupled outputs		
Output Impedance (Differential)	Zout	85	100	115	ohms			
Rx_LOS Output Voltage - High		2		Vcc+0.3	V	lo = 400µA; Host Vcc		
Rx_LOS Output Voltage - Low		0		0.8	V	lo = -4.0mA		
MOD DEE (0.2)	VoH	2.5			V	- With Social ID		
$MOD_DEF(0.2)$	VoL	0		0.5	V	while Serial ID		

Optical Characteristics

Param	eter	Symbol	Min.	Typical	Max.	Unit		
9µm Core Diameter SMF for OS	ST-SFP-DR-100LX			10		Km		
Data Rate				125		Mbps		
Transmitter								
Centre Wavelength		λc	1260	1310	1360	nm		
Spectral Width (RMS) for OST-	SFP-DR-100LX	σ			7.7	nm		
Average Output Power for OST-	SFP-DR-100LX	Pout	-15		-8	dBm		
Extinction Ratio for OST-SFP-D	DR-100LX	EX	8.2			dB		
Rise/Fall Time(20%~~80%)		tr/tf			2	ns		
Total Jitter		TJ			56.5	ps		
Output Optical Eye			IUT-	T G.957 Com	pliant			
Data Input Swing Differential		Vin	500		2000	mV		
Input Differential Impedance		Zin	90	100	110	Ω		
TVD:	Disable		2.0		VCC+0.3	V		
I X Disable	Enable		0		0.8	v		
	Fault		2.0		VCC+0.3	17		
I X_Fault	Normal		0		0.8	v		
TX_Disable Assert Time		t_off			10	us		
		Receiver						
Centre Wavelength		λc	1100		1600	nm		
Receiver Sensitivity for OST-SF	P-DR-100LX	Se			-32	dBm		
Output Differential Impedance		Pin	90	100	110	Ω		
Data Output Swing Differential	Vout	370		2000	mV			
Rise/Fall Time		Tr/tf			2.2	ns		
LOS De-AssertS		LOSD			-35	dBm		
LOS Assert		LOSA	-40			dBm		
LOG	High		2.0		VCC+0.3	17		
LUS	LOW		0		0.8	v		

EEPROM Serial ID Memory Contents

The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components.

When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not write protected within the SFP transceiver. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. The diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 - 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following. For detail EEPROM information, please refer to the related document of SFF 8472 Rev 9.3.

EEPROM Serial ID Memory Contents

Accessing Serial ID Memory uses the 2 wire address 1010000X(A0). Memory Contents of Serial ID are shown in Table 2.

Table 2 Serial ID Memory Contents							
Data Address	Size (Bytes)	Name of Field	Contents(Hex)	Description			
BASE ID FIELDS							

深圳市欧鑫通信息科技有限公司

1 1 Ext. Identifier 04	ed by serial ID
1 1 Ext. Identifier 04	ica og seriar ib
only	
2 1 Connector 07 LC Conne	ector
3-10 8 Transceiver Transceiver	Codes
11 1 Encoding 03 NRZ	
12 1 BR Nominal 02 155Mbit	t/s
13 1 Reserved 00	
14 1 Length(9µm)km 14	
15 1 Length (9µm) 100m C8	
16 1 Length (50µm) 10m 00	
17 1 Length(62.5um)10m 00	
18 1 Length (Copper) 00 Not compl	liant
19 1 Reserved 00	
4F 75 73 65 6E 74 20 20 20	
20-35 16 Vendor name "Ousent"(A	SCII)
36 1 Reserved 00	
37-39 3 Vendor OUI 00 00 00	
40-55 16 Vendor PN Transceiver par	t number
56-59 4 Vendor rev 20 20 20 20	
60-61 2 Wavelength 05 1E Transceiver wa	velength
62 1 Reserved 00	
63 1 CC_BASE CheckSum(Variable) Check code for Ba	se ID Fields
EXTENDED ID FIELDS	
TX_DISABLE, X_FA	ULT and Loss
64-65 2 Options 00 IA of Signal mple	emented.
66 1 BR,max 00	
67 1 BR,min 00	
42 30 39 38 32 32 20 Serial Number of t	transceiver
20 20 20 20 20 20 20 20 (ASCII).Forexample	eB009822".
Manufactory date code	e. For example
84-91 8 Date code 50 52 51 50 50 55 20 20 "021005"	
92-94 3 Reserved 00 00 00	
95 1 CC_EXT CheckSum(Variable) Check sum for Extended	ded ID Field.
VENDOR SPECIFIC ID FIELDS	
96-127 32 Vendor Specific Read only Depends on customer	r information
128-155128ReservedRead onlyFilled by zet	ero

SFP Transceiver Electrical Pad Layout

Pin Description

As Viewed Through Top of	Board
--------------------------	-------

Pin	Name	Function/Description	Engagementorder	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	1
3	TXDisable	Transmitter Disable-Module disables on high or open	3	2
4	MOD-DEF2	Module Definition 2-Two wire serial ID interface	3	3
5	MOD-DEF1	Module Definition 1-Two wire serial ID interface	3	3
6	MOD-DEF0	Module Definition 0-Two wire serial ID interface	3	3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	Veer	Receiver Ground	1	
12	RD-	Inverse Received Data out	3	5
13	RD+	Received Data out	3	5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power — +3.3V±5%	2	6
16	VccT	Transmitter Power —— +3.3 V±5%	2	6
17	VeeT	Transmitter Ground	1	
18	TD+	Transmitter Data In	3	7
19	TD-	Inverse Transmitter Data In	3	7
20	VeeT	Transmitter Ground	1	

Note1. TX Fault is open collector/drain output which should be pulled up externally with a $4.7K - 10K\Omega$ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates a laser fault of some kind. Low indicates normal operation.

In the low state, the output will be pulled to <0.8V.

Note2. TX Disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a 4.7 - 20K resistor. Low (0 - 0.8V): Transmitter on Between (0.8V and 2V): Undefined High (2.0 - VccT): Transmitter Disabled Open : Transmitter Disabled

Note3. Mod-Def 0, 1, 2. These are the module definition pins. They should be pulled up with a 4.7 - 10K resistor on the host board to supply less than VccT+0.3V or VccR+0.3V. Mod-Def 0 is grounded by the module to indicate that the module is present. Mod-Def 1 is clock line of two wire serial interface for optional serial ID. Mod-Def 2 is data line of two wire serial interface for optional serial ID.

Note4. LOS (Loss of signal) is an open collector/drain output which should be pulled up externally with a 4.7 - 10K resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to <0.8V.

Note5. RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω differential at the user SERDES. The AC coupling is done inside the module and thus not required on the host board.

Note6. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. The in-rush current will typically be no more than 30mA above steady state supply current after 500ns.

Note7. TD-/+: These are the differential transmitter inputs. They are AC coupled differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on host board.

Block Diagram

Required Host Board Components

Package Outline

Ordering information of LC BIDI SFP

Part No	Data Rate	Laser	Fiber Type	Distance	Optical	Industry	DDM	Application
I alt 140.				Distance	Interface	Temperatur	DDM	
OX1315-20	155Mbps	1310nm	SMF	20km	LC		NO	FE
OX1315-20	155Mbps	1310nm	SMF	20km	LC	YES	NO	FE

* D--- DDMI, I---Industry temperature

NOTICE:

OX reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only.OX makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification

Contact information :

SHENZHEN OX-SYSTEM INFORMATION AND TECHNOLOGY CO, LTD

Website: http://www.ox-system.com

Contact: admin@ox-system.com or 4008163738